Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Am J Physiol Cell Physiol ; 326(4): C1178-C1192, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38406825

ABSTRACT

K+ channel Kir7.1 expressed at the apical membrane of the retinal pigment epithelium (RPE) plays an essential role in retinal function. An isoleucine-to-threonine mutation at position 120 of the protein is responsible for blindness-causing vitreo-retinal dystrophy. We have studied the molecular mechanism of action of Kir7.1-I120T in vitro by heterologous expression and in vivo in CRISPR-generated knockin mice. Full-size Kir7.1-I120T reaches the plasma membrane but lacks any activity. Analysis of Kir7.1 and the I120T mutant in mixed transfection experiments, and that of tandem tetrameric constructs made by combining wild type (WT) and mutant protomers, leads us to conclude that they do not form heterotetramers in vitro. Homozygous I120T/I120T mice show cleft palate and tracheomalacia and do not survive beyond P0, whereas heterozygous WT/I120T develop normally. Membrane conductance of RPE cells isolated from WT/WT and heterozygous WT/I120T mice is dominated by Kir7.1 current. Using Rb+ as a charge carrier, we demonstrate that the Kir7.1 current of WT/I120T RPE cells corresponds to approximately 50% of that in cells from WT/WT animals, in direct proportion to WT gene dosage. This suggests a lack of compensatory effects or interference from the mutated allele product, an interpretation consistent with results obtained using WT/- hemizygous mouse. Electroretinography and behavioral tests also show normal vision in WT/I120T animals. The hypomorphic ion channel phenotype of heterozygous Kir7.1-I120T mutants is therefore compatible with normal development and retinal function. The lack of detrimental effect of this degree of functional deficit might explain the recessive nature of Kir7.1 mutations causing human eye disease.NEW & NOTEWORTHY Human retinal pigment epithelium K+ channel Kir7.1 is affected by generally recessive mutations leading to blindness. We investigate one such mutation, isoleucine-to-threonine at position 120, both in vitro and in vivo in knockin mice. The mutated channel is inactive and in heterozygosis gives a hypomorphic phenotype with normal retinal function. Mutant channels do not interfere with wild-type Kir7.1 channels which are expressed concomitantly without hindrance, providing an explanation for the recessive nature of the disease.


Subject(s)
Isoleucine , Retina , Mice , Humans , Animals , Isoleucine/metabolism , Retina/metabolism , Blindness/metabolism , Mutation/genetics , Threonine/metabolism
2.
PLoS Pathog ; 19(3): e1011188, 2023 03.
Article in English | MEDLINE | ID: mdl-36917600

ABSTRACT

Sea louse ectoparasitosis is a major threat to fish aquaculture. Avermectins such as ivermectin and emamectin have been effectively used against sea louse infestation, but the emergence of resistance has limited their use. A better understanding of the molecular targets of avermectins is essential to the development of novel treatment strategies or new, more effective drugs. Avermectins are known to act by inhibiting neurotransmission through allosteric activation of glutamate-gated chloride channels (GluCls). We have investigated the GluCl subunit present in Caligus rogercresseyi, a sea louse affecting aquaculture in the Southern hemisphere. We identify four new subunits, CrGluCl-B to CrGluCl-E, and characterise them functionally. CrGluCl-A (previously reported as CrGluClα), CrGluCl-B and CrGluCl-C all function as glutamate channel receptors with different sensitivities to the agonist, but in contrast to subunit -A and -C, CrGluCl-B is not activated by ivermectin but is rather antagonised by the drug. CrGluCl-D channel appears active in the absence of any stimulation by glutamate or ivermectin and CrGluCl-E does not exhibit any activity. Notably, the expression of CrGluCl-B with either -A or -C subunits gives rise to receptors unresponsive to ivermectin and showing altered response to glutamate, suggesting that coexpression has led to the preferential formation of heteromers to which the presence of CrGluCl-B confers the property of ivermectin-activation refractoriness. Furthermore, there was evidence for heteromer formation with novel properties only when coexpressing pairs E/C and D/B CrGluCl subtypes. Site-directed mutagenesis shows that three transmembrane domain residues contribute to the lack of activation by ivermectin, most crucially Gln 15' in M2, with mutation Q15'T (the residue present in ivermectin-activated subunits A and C) conferring ivermectin activation to CrGluCl-B. The differential response to avermectin of these Caligus rogercresseyi GluClsubunits, which are highly conserved in the Northern hemisphere sea louse Lepeophtheirus salmonis, could have an influence on the response of these parasites to treatment with macrocyclic lactones. They could serve as molecular markers to assess susceptibility to existing treatments and might be useful molecular targets in the search for novel antiparasitic drugs.


Subject(s)
Copepoda , Parasites , Phthiraptera , Animals , Ivermectin/pharmacology , Ivermectin/metabolism , Phthiraptera/metabolism , Parasites/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Glutamic Acid/pharmacology
3.
J Med Chem ; 65(22): 15014-15027, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36378530

ABSTRACT

Chemical structures of selective blockers of TASK channels contain aromatic groups and amide bonds. Using this rationale, we designed and synthesized a series of compounds based on 3-benzamidobenzoic acid. These compounds block TASK-1 channels by binding to the central cavity. The most active compound is 3-benzoylamino-N-(2-ethyl-phenyl)-benzamide or F3, blocking TASK-1 with an IC50 of 148 nM, showing a reduced inhibition of TASK-3 channels and not a significant effect on different K+ channels. We identified putative F3-binding sites in the TASK-1 channel by molecular modeling studies. Mutation of seven residues to A (I118A, L122A, F125A, Q126A, L232A, I235A, and L239A) markedly decreased the F3-induced inhibition of TASK-1 channels, consistent with the molecular modeling predictions. F3 blocks cell proliferation and viability in the MCF-7 cancer cell line but not in TASK-1 knockdown MCF-7 cells, indicating that it is acting in TASK-1 channels. These results indicated that TASK-1 is necessary to drive proliferation in the MCF-7 cancer cell line.


Subject(s)
Neoplasms , Humans , Structure-Activity Relationship , Binding Sites , Cell Proliferation , Models, Molecular , MCF-7 Cells
4.
J Physiol ; 599(2): 593-608, 2021 01.
Article in English | MEDLINE | ID: mdl-33219695

ABSTRACT

KEY POINTS: Kir7.1 K+ channel expressed in retinal pigment epithelium is mutated in inherited retinal degeneration diseases. We study Kir7.1 in heterologous expression to test the hypothesis that pathological R162 mutation to neutral amino acids results in loss of a crucial site that binds PI(4,5)P2 . Although R162W mutation inactivates Kir7.1, changes to smaller volume (e.g. Gln) amino acids are tolerated or even enhance function (Ala or Cys). Chemical modification of Kir7.1-R162C confirms that large residues of the size of Trp are incompatible with normal channel function even if positively charged. In addition to R162, K164 (and possibly K159) forms a binding site for the phosphoinositide and is essential for channel activity. R162 substitution with a large, neutral side chain like Trp exerts a dominant negative effect on Kir7.1 activity such that less than one fifth of the full activity is expected in a cell expressing the same amount of mutant and wild-type channels. ABSTRACT: Mutations in the Kir7.1 K+ channel, highly expressed in retinal pigment epithelium, have been linked to inherited retinal degeneration diseases. Examples are mutations changing Arg 162 to Trp in snowflake vitreoretinal degeneration (SVD) and Gln in retinitis pigmentosa. R162 is believed to be part of a site that binds PI(4,5)P2 and stabilises the open state. We have tested the hypothesis that R162 mutation to neutral amino acids will result in the loss of this crucial interaction to the detriment of channel function. Our findings indicate that although R612W mutation inactivates Kir7.1, changes to smaller volume (e.g. Gln) amino acids are tolerated or even enhance function (Ala or Cys). Cys chemical modification of Kir7.1-R162C confirms that large residues of the size of Trp are incompatible with normal channel function even if positively charged. Experiments titrating the levels of plasma membrane PI(4,5)P2 with voltage-dependent phosphatase DrVSP reveal that, in addition to R162, K164 (and possibly K159) forms a binding site for the phosphoinositide and ensures channel activity. Finally, the use of a concatemeric approach shows that substitution of R162 with a large, neutral side chain mimicking a Trp residue exerts a dominant negative effect on Kir7.1 activity such that less than one fifth of the full activity is expected in heterozygous cells carrying the SVD mutation. Our results suggest that if mutations in the human KCNJ13 gene resulting in the neutralisation of R162 and Kir7.1 malfunction led to retinal degeneration diseases, their severity might depend on the nature of the side chain of the replacing amino acid.


Subject(s)
Retinal Degeneration , Cell Membrane , Humans , Mutation , Phosphatidylinositols , Retinal Degeneration/genetics , Retinal Pigment Epithelium
5.
Cells ; 9(8)2020 07 26.
Article in English | MEDLINE | ID: mdl-32722648

ABSTRACT

Lubiprostone, a 20-carbon synthetic fatty acid used for the treatment of constipation, is thought to act through an action on Cl- channel ClC-2. Short chain fatty acids (SCFAs) are produced and absorbed in the distal intestine. We explore whether SCFAs affect ClC-2, re-examine a possible direct effect of lubiprostone on ClC-2, and use mice deficient in ClC-2 to stringently address the hypothesis that the epithelial effect of lubiprostone targets this anion channel. Patch-clamp whole cell recordings of ClC-2 expressed in mammalian cells are used to assay SCFA and lubiprostone effects. Using chamber measurements of ion current in mice deficient in ClC-2 or CFTR channels served to analyze the target of lubiprostone in the distal intestinal epithelium. Intracellular SCFAs had a dual action on ClC-2, partially inhibiting conduction but, importantly, facilitating the voltage activation of ClC-2. Intra- or extracellular lubiprostone had no effect on ClC-2 currents. Lubiprostone elicited a secretory current across colonic epithelia that was increased in mice deficient in ClC-2, consistent with the channel's proposed proabsorptive function, but absent from those deficient in CFTR. Whilst SCFAs might exert a physiological effect on ClC-2 as part of their known proabsorptive effect, ClC-2 plays no part in the lubiprostone intestinal effect that appears mediated by CFTR activation.


Subject(s)
Chloride Channel Agonists/therapeutic use , Chloride Channels/drug effects , Fatty Acids, Volatile/metabolism , Intestinal Mucosa/drug effects , Lubiprostone/therapeutic use , CLC-2 Chloride Channels , Chloride Channel Agonists/pharmacology , HEK293 Cells , Humans , Lubiprostone/pharmacology
6.
Int J Mol Sci ; 21(2)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947679

ABSTRACT

Two-pore domain potassium (K2P) channels maintain the cell's background conductance by stabilizing the resting membrane potential. They assemble as dimers possessing four transmembrane helices in each subunit. K2P channels were crystallized in "up" and "down" states. The movements of the pore-lining transmembrane TM4 helix produce the aperture or closure of side fenestrations that connect the lipid membrane with the central cavity. When the TM4 helix is in the up-state, the fenestrations are closed, while they are open in the down-state. It is thought that the fenestration states are related to the activity of K2P channels and the opening of the channels preferentially occurs from the up-state. TASK-2, a member of the TALK subfamily of K2P channels, is opened by intracellular alkalization leading the deprotonation of the K245 residue at the end of the TM4 helix. This charge neutralization of K245 could be sensitive or coupled to the fenestration state. Here, we describe the relationship between the states of the intramembrane fenestrations and K245 residue in TASK-2 channel. By using molecular modeling and simulations, we show that the protonated state of K245 (K245+) favors the open fenestration state and, symmetrically, that the open fenestration state favors the protonated state of the lysine residue. We show that the channel can be completely blocked by Prozac, which is known to induce fenestration opening in TREK-2. K245 protonation and fenestration aperture have an additive effect on the conductance of the channel. The opening of the fenestrations with K245+ increases the entrance of lipids into the selectivity filter, blocking the channel. At the same time, the protonation of K245 introduces electrostatic potential energy barriers to ion entrance. We computed the free energy profiles of ion penetration into the channel in different fenestration and K245 protonation states, to show that the effects of the two transformations are summed up, leading to maximum channel blocking. Estimated rates of ion transport are in qualitative agreement with experimental results and support the hypothesis that the most important barrier for ion transport under K245+ and open fenestration conditions is the entrance of the ions into the channel.


Subject(s)
Hydrogen-Ion Concentration , Potassium Channels, Tandem Pore Domain/chemistry , Potassium Channels, Tandem Pore Domain/metabolism , Amino Acid Sequence , Binding Sites , HEK293 Cells , Humans , Ion Channel Gating , Ions/chemistry , Ions/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Structure-Activity Relationship
7.
Exp Eye Res ; 186: 107723, 2019 09.
Article in English | MEDLINE | ID: mdl-31319081

ABSTRACT

Inwardly rectifying K+ channel Kir7.1 is expressed in epithelia where it shares membrane localisation with the Na+/K+-pump. The ciliary body epithelium (CBE) of the eye is a determinant of intraocular pressure (IOP) through NaCl-driven fluid secretion of aqueous humour. In the present study we explored the presence Kir7.1 in this epithelium in the mouse and its possible functional role in the generation of IOP. Use heterozygous animals for total Kir7.1 knockout expressing ß-galactosidase under the control of Kir7.1 promoter, identified the expression of Kir7.1 in non-pigmented epithelial cells of CBE. Using conditional, floxed knockout Kir7.1 mice as negative controls, we found Kir7.1 at the basolateral membrane of the same CBE cell layer. This was confirmed using a knockin mouse expressing the Kir7.1 protein tagged with a haemagglutinin epitope. Measurements using the conditional knockout mouse show only a minor effect of Kir7.1 inactivation on steady-state IOP. Transient increases in IOP in response to general anaesthetics, or to water injection, are absent or markedly curtailed in Kir7.1-deficient mice. These results suggest a role for Kir7.1 in IOP regulation through a possible modulation of aqueous humour production by the CBE non-pigmented epithelial cells. The location of Kir7.1 in the CBE, together with the effect of its removal on dynamic changes in IOP, point to a possible role of the channel as a leak pathway preventing cellular overload of K+ during the secretion process. Kir7.1 could be used as a potential therapeutic target in pathological conditions leading to elevated intraocular pressure.


Subject(s)
Ciliary Body/metabolism , Epithelial Cells/metabolism , Intraocular Pressure/physiology , Potassium Channels, Inwardly Rectifying/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout
8.
Int J Mol Sci ; 20(9)2019 May 07.
Article in English | MEDLINE | ID: mdl-31067753

ABSTRACT

TASK-3 potassium (K+) channels are highly expressed in the central nervous system, regulating the membrane potential of excitable cells. TASK-3 is involved in neurotransmitter action and has been identified as an oncogenic K+ channel. For this reason, the understanding of the action mechanism of pharmacological modulators of these channels is essential to obtain new therapeutic strategies. In this study we describe the binding mode of the potent antagonist PK-THPP into the TASK-3 channel. PK-THPP blocks TASK-1, the closest relative channel of TASK-3, with almost nine-times less potency. Our results confirm that the binding is influenced by the fenestrations state of TASK-3 channels and occurs when they are open. The binding is mainly governed by hydrophobic contacts between the blocker and the residues of the binding site. These interactions occur not only for PK-THPP, but also for the antagonist series based on 5,6,7,8 tetrahydropyrido[4,3-d]pyrimidine scaffold (THPP series). However, the marked difference in the potency of THPP series compounds such as 20b, 21, 22 and 23 (PK-THPP) respect to compounds such as 17b, inhibiting TASK-3 channels in the micromolar range is due to the presence of a hydrogen bond acceptor group that can establish interactions with the threonines of the selectivity filter.


Subject(s)
Molecular Docking Simulation , Potassium Channel Blockers/pharmacology , Potassium Channels, Tandem Pore Domain/chemistry , Pyridines/pharmacology , Pyrimidines/pharmacology , Animals , Binding Sites , Humans , Potassium Channel Blockers/chemistry , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Protein Binding , Pyridines/chemistry , Pyrimidines/chemistry , Xenopus
9.
Biochem Biophys Res Commun ; 514(3): 574-579, 2019 06 30.
Article in English | MEDLINE | ID: mdl-31056263

ABSTRACT

Kir7.1 is an inwardly rectifying K+ channel present in epithelia where it shares membrane localization with the Na+/K+-pump. In the present communication we report the presence of a novel splice variant of Kir7.1 in mouse tissues including kidney, lung, choroid plexus and retinal pigment epithelium (RPE). The variant named mKir7.1-SV2 lacks most of the C-terminus domain but is predicted to have the two transmembrane domains and permeation pathway unaffected. Similarly truncated predicted proteins, Kir7.1-R166X and Kir7.1-Q219X, would arise from mutations associated with Leber Congenital Amaurosis, a rare recessive hereditary retinal disease that results in vision loss at early age. We found that mKir7.1-SV2 and the pathological variants do not produce any channel activity when expressed alone in HEK-293 cells due to their scarce presence in the plasma membrane. Simultaneous expression with the full length Kir7.1 however leads to a reduction in activity of the wild-type channel that might be due to partial proteasome degradation of WT-mutant channel heteromers.


Subject(s)
Leber Congenital Amaurosis/genetics , Mutation/genetics , Organ Specificity , Potassium Channels, Inwardly Rectifying/genetics , RNA Splicing/genetics , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Male , Mice, Inbred C57BL , Mutant Proteins/metabolism , Organ Specificity/drug effects , Peptides/genetics , Potassium/metabolism , Proteasome Inhibitors/pharmacology , RNA Splicing/drug effects
11.
Compr Physiol ; 9(1): 301-342, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30549019

ABSTRACT

The many mechanisms governing NaCl absorption in the diverse parts of the renal tubule have been largely elucidated, although some of them, as neutral NaCl absorption across the cortical collecting duct or regulation through with-no-lysine (WNK) kinases have emerged only recently. Chloride channels, which are important players in these processes, at least in the distal nephron, are the focus of this review. Over the last 20-year period, experimental studies using molecular, electrophysiological, and physiological/functional approaches have deepened and renewed our views on chloride channels and their role in renal function. Two chloride channels of the ClC family, named as ClC-Ka and ClC-Kb in humans and ClC-K1 and ClC-K2 in other mammals, are preponderant and play complementary roles: ClC-K1/Ka is mainly involved in the building of the interstitial cortico-medullary concentration gradient, while ClC-K2/Kb participates in NaCl absorption in the thick ascending limb, distal convoluted tubule and the intercalated cells of the collecting duct. The two ClC-Ks might also be involved indirectly in proton secretion by type A intercalated cells. Other chloride channels in the kidneys include CFTR, TMEM16A, and probably volume-regulated LRRC8 chloride channels, whose function and molecular identity have not as yet been established. © 2019 American Physiological Society. Compr Physiol 9:301-342, 2019.


Subject(s)
Chloride Channels/metabolism , Kidney/metabolism , Sodium Chloride/metabolism , Animals , Chloride Channels/chemistry , Chloride Channels/genetics , Humans , Kidney/physiology , Renal Reabsorption
12.
Sci Rep ; 8(1): 9320, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29915289

ABSTRACT

Nearly 70% of cystic fibrosis (CF) patients bear the phenylalanine-508 deletion but disease severity differs greatly, and is not explained by the existence of different mutations in compound heterozygous. Studies demonstrated that genes other than CFTR relate to intestinal disease in humans and CF-mouse. Kcnn4, the gene encoding the calcium-activated potassium channel KCa3.1, important for intestinal secretion, is present in a locus linked with occurrence of intestinal CF-disease in mice and humans. We reasoned that it might be a CF-modifier gene and bred a CF-mouse with Kcnn4 silencing, finding that lethality was almost abolished. Silencing of Kcnn4 did not improve intestinal secretory functions, but rather corrected increased circulating TNF-α level and reduced intestinal mast cell increase. Given the importance of mast cells in intestinal disease additional double mutant CF-animals were tested, one lacking mast cells (C-kitW-sh/W-sh) and Stat6-/- to block IgE production. While mast cell depletion had no effect, silencing Stat6 significantly reduced lethality. Our results show that Kcnn4 is an intestinal CF modifier gene partially acting through a STAT6-dependent mechanism.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Genes, Modifier , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intestinal Diseases/genetics , Animals , Cytokines/metabolism , Immunoglobulin E/metabolism , Inflammation Mediators/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/deficiency , Intestinal Mucosa/pathology , Ion Channel Gating , Mast Cells/metabolism , Mice, Inbred C57BL , Mutation/genetics , Phenotype , STAT6 Transcription Factor/metabolism , Survival Analysis , Weight Gain
13.
Front Physiol ; 9: 428, 2018.
Article in English | MEDLINE | ID: mdl-29740340

ABSTRACT

Kir7.1 encoded by the Kcnj13 gene in the mouse is an inwardly rectifying K+ channel present in epithelia where it shares membrane localization with the Na+/K+-pump. Further investigations of the localisation and function of Kir7.1 would benefit from the availability of a knockout mouse, but perinatal mortality attributed to cleft palate in the neonate has thwarted this research. To facilitate localisation studies we now use CRISPR/Cas9 technology to generate a knock-in mouse, the Kir7.1-HA that expresses the channel tagged with a haemagglutinin (HA) epitope. The availability of antibodies for the HA epitope allows for application of western blot and immunolocalisation methods using widely available anti-HA antibodies with WT tissues providing unambiguous negative control. We demonstrate that Kir7.1-HA cloned from the choroid plexus of the knock-in mouse has the electrophysiological properties of the native channel, including characteristically large Rb+ currents. These large Kir7.1-mediated currents are accompanied by abundant apical membrane Kir7.1-HA immunoreactivity. WT-controlled western blots demonstrate the presence of Kir7.1-HA in the eye and the choroid plexus, trachea and lung, and intestinal epithelium but exclusively in the ileum. In the kidney, and at variance with previous reports in the rat and guinea-pig, Kir7.1-HA is expressed in the inner medulla but not in the cortex or outer medulla. In isolated tubules immunoreactivity was associated with inner medulla collecting ducts but not thin limbs of the loop of Henle. Kir7.1-HA shows basolateral expression in the respiratory tract epithelium from trachea to bronchioli. The channel also appears basolateral in the epithelium of the nasal cavity and nasopharynx in newborn animals. We show that HA-tagged Kir7.1 channel introduced in the mouse by a knock-in procedure has functional properties similar to the native protein and the animal thus generated has clear advantages in localisation studies. It might therefore become a useful tool to unravel Kir7.1 function in the different organs where it is expressed.

14.
J Physiol ; 596(3): 393-407, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29143340

ABSTRACT

KEY POINTS: K+ channels are important in intestinal epithelium as they ensure the ionic homeostasis and electrical potential of epithelial cells during anion and fluid secretion. Intestinal epithelium cAMP-activated anion secretion depends on the activity of the (also cAMP dependent) KCNQ1-KCNE3 K+ channel, but the secretory process survives after genetic inactivation of the K+ channel in the mouse. Here we use double mutant mice to investigate which alternative K+ channels come into action to compensate for the absence of KCNQ1-KCNE3 K+ channels. Our data establish that whilst Ca2+ -activated KCa 3.1 channels are not involved, K2P two-pore domain TASK-2 K+ channels are major players providing an alternative conductance to sustain the intestinal secretory process. Work with double mutant mice lacking both TASK-2 and KCNQ1-KCNE3 channels nevertheless points to yet-unidentified K+ channels that contribute to the robustness of the cAMP-activated anion secretion process. ABSTRACT: Anion and fluid secretion across the intestinal epithelium, a process altered in cystic fibrosis and secretory diarrhoea, is mediated by cAMP-activated CFTR Cl- channels and requires the simultaneous activity of basolateral K+ channels to maintain cellular ionic homeostasis and membrane potential. This function is fulfilled by the cAMP-activated K+ channel formed by the association of pore-forming KCNQ1 with its obligatory KCNE3 ß-subunit. Studies using mice show sizeable cAMP-activated intestinal anion secretion in the absence of either KCNQ1 or KCNE3 suggesting that an alternative K+ conductance must compensate for the loss of KCNQ1-KCNE3 activity. We used double mutant mouse and pharmacological approaches to identify such a conductance. Ca2+ -dependent anion secretion can also be supported by Ca2+ -dependent KCa 3.1 channels after independent CFTR activation, but cAMP-dependent anion secretion is not further decreased in the combined absence of KCa 3.1 and KCNQ1-KCNE3 K+ channel activity. We show that the K2P K+ channel TASK-2 is expressed in the epithelium of the small and large intestine. Tetrapentylammonium, a TASK-2 inhibitor, abolishes anion secretory current remaining in the absence of KCNQ1-KCNE3 activity. A double mutant mouse lacking both KCNQ1-KCNE3 and TASK-2 showed a much reduced cAMP-mediated anion secretion compared to that observed in the single KCNQ1-KCNE3 deficient mouse. We conclude that KCNQ1-KCNE3 and TASK-2 play major roles in the intestinal anion and fluid secretory phenotype. The persistence of an, admittedly reduced, secretory activity in the absence of these two conductances suggests that further additional K+ channel(s) as yet unidentified contribute to the robustness of the intestinal anion secretory process.


Subject(s)
Chlorides/metabolism , Intestines/physiology , KCNQ1 Potassium Channel/physiology , Mutation , Potassium Channels, Tandem Pore Domain/physiology , Potassium Channels, Voltage-Gated/physiology , Animals , Calcium/metabolism , Cyclic AMP/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
15.
Mol Pharm ; 14(7): 2197-2208, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28494157

ABSTRACT

A1899 is a potent and selective inhibitor of the two-pore domain potassium (K2P) channel TASK-1. It was previously reported that A1899 acts as an open-channel blocker and binds to residues of the P1 and P2 regions, the M2 and M4 segments, and the halothane response element. The recently described crystal structures of K2P channels together with the newly identified side fenestrations indicate that residues relevant for TASK-1 inhibition are not purely facing the central cavity as initially proposed. Accordingly, the TASK-1 binding site and the mechanism of inhibition might need a re-evaluation. We have used TASK-1 homology models based on recently crystallized K2P channels and molecular dynamics simulation to demonstrate that the highly potent TASK-1 blocker A1899 requires binding to residues located in the side fenestrations. Unexpectedly, most of the previously described residues that interfere with TASK-1 blockade by A1899 project their side chains toward the fenestration lumina, underlining the relevance of these structures for drug binding in K2P channels. Despite its hydrophobicity, A1899 does not seem to use the fenestrations to gain access to the central cavity from the lipid bilayer. In contrast, binding of A1899 to residues of the side fenestrations might provide a physical "anchor", reflecting an energetically favorable binding mode that after pore occlusion stabilizes the closed state of the channels.


Subject(s)
Benzamides/pharmacology , Benzeneacetamides/pharmacology , Molecular Dynamics Simulation , Nerve Tissue Proteins/antagonists & inhibitors , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Animals , Benzamides/chemistry , Benzeneacetamides/chemistry , Binding Sites , Humans , Hydrophobic and Hydrophilic Interactions , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Potassium Channels, Tandem Pore Domain/chemistry , Potassium Channels, Tandem Pore Domain/metabolism
16.
Sci Rep ; 7: 45407, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28358046

ABSTRACT

Two-pore domain K2P K+ channels responsible for the background K+ conductance and the resting membrane potential, are also finely regulated by a variety of chemical, physical and physiological stimuli. Hormones and transmitters acting through Gq protein-coupled receptors (GqPCRs) modulate the activity of various K2P channels but the signalling involved has remained elusive, in particular whether dynamic regulation by membrane PI(4,5)P2, common among other classes of K+ channels, affects K2P channels is controversial. Here we show that K2P K+ channel TASK-2 requires PI(4,5)P2 for activity, a dependence that accounts for its run down in the absence of intracellular ATP and its full recovery by addition of exogenous PI(4,5)P2, its inhibition by low concentrations of polycation PI scavengers, and inhibition by PI(4,5)P2 depletion from the membrane. Comprehensive mutagenesis suggests that PI(4,5)P2 interaction with TASK-2 takes place at C-terminus where three basic aminoacids are identified as being part of a putative binding site.


Subject(s)
Phosphatidylinositol 4,5-Diphosphate/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Adenosine Triphosphate/metabolism , Animals , Diglycerides/pharmacology , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HEK293 Cells , Humans , Membrane Potentials/drug effects , Mice , Mutagenesis, Site-Directed , Neomycin/pharmacology , Patch-Clamp Techniques , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Potassium Channels, Tandem Pore Domain/genetics , Protein Subunits/metabolism
18.
Mol Pharmacol ; 90(3): 309-17, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27268784

ABSTRACT

K2P K(+) channels with two pore domains in tandem associate as dimers to produce so-called background conductances that are regulated by a variety of stimuli. Whereas gating in K2P channels has been poorly understood, recent developments have provided important clues regarding the gating mechanism for this family of proteins. Two modes of gating present in other K(+) channels have been considered. The first is the so-called activation gating that occurs by bundle crossing and the splaying apart of pore-lining helices commanding ion passage. The second mode involves a change in conformation at the selectivity filter (SF), which impedes ion flow at this narrow portion of the conduction pathway and accounts for extracellular pH modulation of several K2P channels. Although some evidence supports the existence of an activation gate in K2P channels, recent results suggest that perhaps all stimuli, even those sensed at a distant location in the protein, are also mediated by SF gating. Recently resolved crystal structures of K2P channels in conductive and nonconductive conformations revealed that the nonconductive state is reached by blockade by a lipid acyl chain that gains access to the channel cavity through intramembrane fenestrations. Here we discuss whether this novel type of gating, proposed so far only for membrane tension gating, might mediate gating in response to other stimuli or whether SF gating is the only type of opening/closing mechanism present in K2P channels.


Subject(s)
Ion Channel Gating , Potassium Channels, Tandem Pore Domain/chemistry , Potassium Channels, Tandem Pore Domain/metabolism , Animals , Humans , Mechanotransduction, Cellular , Models, Biological , Models, Molecular
19.
PLoS One ; 10(9): e0139284, 2015.
Article in English | MEDLINE | ID: mdl-26402555

ABSTRACT

Kir7.1 is an inwardly rectifying K+ channel of the Kir superfamily encoded by the kcnj13 gene. Kir7.1 is present in epithelial tissues where it colocalizes with the Na+/K+-pump probably serving to recycle K+ taken up by the pump. Human mutations affecting Kir7.1 are associated with retinal degeneration diseases. We generated a mouse lacking Kir7.1 by ablation of the Kcnj13 gene. Homozygous mutant null mice die hours after birth and show cleft palate and moderate retardation in lung development. Kir7.1 is expressed in the epithelium covering the palatal processes at the time at which palate sealing takes place and our results suggest it might play an essential role in late palatogenesis. Our work also reveals a second unexpected role in the development and the physiology of the respiratory system, where Kir7.1 is expressed in epithelial cells all along the respiratory tree.


Subject(s)
Cleft Palate/pathology , Lung/growth & development , Lung/pathology , Potassium Channels, Inwardly Rectifying/deficiency , Animals , Animals, Newborn , Body Weight , Cleft Palate/embryology , Embryonic Development , Epithelium/metabolism , Epithelium/pathology , Lung/abnormalities , Lung/embryology , Mice, Inbred C57BL , Mice, Mutant Strains , Potassium Channels, Inwardly Rectifying/metabolism , Survival Analysis
20.
J Neurosci ; 35(10): 4168-78, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25762664

ABSTRACT

Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K(+) or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.


Subject(s)
Astrocytes/drug effects , Ion Channels/physiology , Lactic Acid/metabolism , Potassium/pharmacology , Animals , Animals, Newborn , Barium/pharmacology , Cadmium/pharmacology , Cells, Cultured , Cerebral Cortex/cytology , Female , Fluoresceins/metabolism , Glycogen/metabolism , Humans , In Vitro Techniques , Ion Channels/drug effects , Ions/pharmacology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/physiology , Pyruvic Acid/pharmacology , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...